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Project Goals: The long-term goal for this Project is to validate strategies for secure 
microbial systems that operate in dynamic environmental conditions, thus enabling 
systems-level and rational biological design for a range of applications. There are several 
key challenges to incorporating safeguard systems at the design stage including: (1) lack of 
knowledge for how well safeguards operate across the broad set of environmental and 
physiological conditions that an organism experiences; (2) a need to integrate the safeguard 
with other cellular components so that it can sense and recognize specific signals from the 
intracellular or extracellular environment, and mediate a response; and (3) a need for 
rapid and reliable methods to engineer and optimize the biological components for 
safeguard construction and functional integration. To address these challenges, we propose 
to use recent advances in the fields of synthetic biology, artificial intelligence (AI), and 
automation, which together pave the way for a paradigm shift in our understanding of the 
ways that cellular function can be designed at the level of bacterial communities. 
 

Developing organismal systems to apply rational biological design to areas of need 
necessitates development of mechanisms to safely contain those organisms to protect the 
environment and public. Rational design of biological modules (e.g., biosensors, novel enzymes 
for biosynthesis and/or degradation, control circuits) to enable stability in engineered microbial 
systems also presents challenges due to the size of potential design-search spaces. For example, 
optimizing a 10 amino acid span of a 300 residue-length protein has 1020 potential combinations 
embedded within a highly non-linear (and potentially sparsely sampled) space. Scaling this type 
of optimization problem to the level of pathways and cellular systems produces an effectively 
infinite search space. This requires developing AI frameworks to intelligently explore that space 
to reduce time and effort needed to conduct Design, Build, Test, and Learn (DBTL) cycles. 

As part of this optimization process, we are developing a bacterial “self-destruct” mechanism 
that activates under specific environmental conditions. This mechanism relies on a gRNA in the 
bacterium that self-targets a genomic locus such that the gRNA has low activity in the lab, but 
under changing cellular conditions in response to a specific environmental condition, becomes 
highly active. As gRNA activity can widely vary between target locations within the same gene 
[1, 2], and the same location targeted under different physiological conditions can lead to gRNA 
activity changes orders of magnitude in size, machine learning (ML) and AI strategies are 
needed to elucidate rules governing CRISPR/Cas gRNA activity under changing conditions. In 
order to optimally identify gRNAs capable of producing desired behavior, we developed a deep-
learning model, CRISPRAct, that combines a natural language model with a neural network 
(NN) model to predict the fold change in cell population as a proxy for gRNA activity. This 
model utilizes Google AI’s ALBERT [3] architecture by treating the 21 bp upstream and 21 bp  
downstream of the PAM site as “sentences” composed of seven “words” which themselves 



comprise three bases. Our model is pre-trained on representative Escherichia coli genomes, then 
fine-tuned while a regression model is built on top of the pre-trained model. The NN model uses 
444 features comprising physicochemical and positional features [1] along with environmental 
and cellular conditions (e.g., media type and growth phase). Predictions from the models are 
combined through polynomial regression to predict the fold change in cell population for a given 
gRNA. CRISPRAct produces a Mean Absolute Error (MAE) of 0.39 and Spearman Correlation 
Coefficient of 66.4% at different timepoints in variable physiological conditions. 

Environment-responsive systems are not only useful in biocontainment, but also lay 
foundations for further development of self-contained biological modules that respond to cellular 
signals. We are thus developing biological modules that interpret and respond to complex 
dynamics of intracellular and extracellular signaling interactions. To accomplish this, we 
combine AI, ML, and dynamical modeling approaches to capture the dynamics of our biological 
modules and their impact on phenotypes. Our dynamical models (DMs) encode, as first-
principles, complex networks of interactions between proteins and their regulatory mechanisms 
that underlie functions targeted in rational biological design objectives. We leveraged an ML 
approach that uses feature selection to identify a testable, low-dimensional representation of 
intracellular signaling to guide more efficient exploration of the design search space [4]. We also 
developed convolutional autoencoders (CAEs) that enable efficient approximation of 
computationally-expensive DM simulations. The AI model treats multivariate results of DM 
simulations as images wherein each row of pixels represents the simulated time course of a 
cellular component. Using a DM with 14 observable proteins and 100 simulation timepoints, we 
generated 10,000 1400-pixel images (each representing distinct configurations of the initial 
amount and activity of proteins) which were compressed via a CAE to a 196-dimensional latent 
space. Hyperparameters (e.g. the dimensionality of the latent space) were optimized using 
Optuna [5] which achieved a minimum running Mean Squared Error (MSE) loss of 0.02. This 
approach provides compressed latent representations of intracellular signaling dynamics, which 
enables them to readily support rational biological design by guiding more efficient exploration 
of an otherwise sparse nonlinear design-search space. The dynamical modeling and AI approach 
were developed in tandem and are part of a larger modeling and optimization loop that offers a 
synergistic impact on our model-based design objectives. 
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